Аминокислоты незаменимые и заменимые. что это такое, сколько нужно для организма человека, таблица в пище

Что собой представляют

Серосодержащие аминокислоты – аминокислоты, содержащие атомы серы. Список:

  • метионин;
  • цистеин;
  • цистин.

Они окисляются в тканях с образованием ионов серной кислоты. Самые разнообразные пути метаболического превращения у метионина.

Характеристика серосодержащих аминокислот в таблице.

Аминокислоты Метионин Цистеин Цистин
Тип Незаменимая Заменимая Заменимая
Формула HOCCH (NH2) CH2CH2SCH3 HO2CCH (NH2) CH2SH C6H12N2O4S2
Особенности обмена, биохимия Активная форма – аденозилметионин, образующаяся при взаимодействии метионина с АТФ. При реакции метилирования превращается в аденозилгомоцистеин, распадается на гомоцистеин и аденозин. Участвует в образовании креатина, карнитина, холина, тиамина, серы, цистеина, адреналина, фосфолипидов, адреналина. Образуется из серина, АТФ, с участием метионина, может быть получен восстановлением цистина. Переходит в таурин и серную кислоту, входит в состав глутатиона. Участвует в биосинтезе цистина, глутатиона, таурина, кофермента А. Образуется из цистеина при окислении кислородом воздуха в щелочных растворах, легко превращается обратно. Участвует в формировании белков, пептидов, а именно инсулина, иммуноглобулинов, соматостатина.

Гистохимические методы выявления аминокислот в тканях

Реакции выявления аминокислоты в тканях основаны главным образом на выявлении аминогрупп (NH2-), карбоксильных (СООН—), сульфгидрильных (SH-) и дисульфидных (SS-) групп. Разработаны методы выявления отдельных аминокислот (тирозина, триптофана, гистидина, аргинина). Идентификация аминокислоты проводится также при помощи блокирования тех или иных групп. Следует иметь в виду, что гистохимик имеет дело, как правило, с денатурированным белком, поэтому результаты гистохимических методов не всегда сопоставимы с биохимическими.

Для выявления SH- и SS-групп лучшей считается реакция с 2,2′-диокси — 6,6′ — динафтилдисульфидом (ДДД), основанная на образовании нафтил дисульфид а, связанного с белком, содержащим SH-группы. Для развития окраски препарат обрабатывают солью диазония (прочный синий Б или прочный черный К), которая соединяется с нафтилдисульфидом, образуя азокраситель, окрашивающий участки локализации SH-и SS-групп в тканях в оттенки от розового до сине-фиолетового. Метод позволяет проводить количественные сопоставления. Ткань фиксируется в жидкости Карнуа, Буэна, в формалине. Лучшие результаты дает 24-часовая фиксация в 1% растворе трихлоруксусной кислоты на 80% спирте с последующей промывкой в серии спиртов возрастающей концентрации (80, 90, 96%), затем производится обезвоживание и заливка в парафин. Для реакции необходимы реактивы: ДДД, соль диазония, 0,1 М веронал-ацетатный буферный раствор (рН 8,5), 0,1 М фосфатный буферный раствор (рН 7,4), этиловый спирт, серный эфир.

α-Аминокислоты выявляются с помощью нингидрин-реактива Шиффа. Метод основан на взаимодействии нингидрина с аминогруппами (NH2-); образующийся при этом альдегид выявляется реактивом Шиффа. Материал фиксируется в формалине, безводном спирте, жидкости Ценкера, заключается в парафин. Необходимы реактивы: нингидрин, реактив Шиффа, этиловый спирт. Ткани, содержащие α-аминогруппы, окрашиваются в розовато-малиновые оттенки. Специфичность реакции, однако, является спорной, так к окислению нингидрином могут подвергаться не только α-аминокислоты, но и другие алифатические амины.

Тирозин, триптофан, гистидин выявляются тетразониевым методом. Соли диазония в щелочной среде находятся в виде гидроксидов диазония, присоединяющихся к названным аминокислотам. Для усиления цветной окраски срезы обрабатывают β-нафтолом или Н-кислотой. Фиксация формалином, жидкостью Карнуа. Необходимые реактивы: тетразотированный бензидин или лучше прочный синий Б, 0,1 М вероналацетатный буферный раствор (рН 9,2); 0,1 н. HCl, Н-кислота или β-нафтол. В зависимости от реактива срезы окрашиваются в фиолетово-синий или коричневый цвет. При оценке результатов нужно иметь в виду возможность присоединения к гидроксиду диазония фенола и ароматических аминов. Для дифференцировки аминокислот применяют контрольные реакции.

Пищевые источники

Самым эффективным способом поддержания высокого уровня лизина в организме является потребление продуктов, богатых этой аминокислотой.

При этом стоит отметить, что традиционные методы приготовления продуктов могут понизить их питательную ценность. К таким методам относится восстановление с помощью сахаросодержащих веществ, нагревание в присутствии дрожжей или сахарозы, обработка в отсутствии жидкости.

Самым высоким содержанием лизина обладают следующие продукты:

  1. Нежирная говядина и баранина — 3 582 мг/100 грамм (171% от РСН)
  2. Сыр пармезан — 3 306 мг/100 грамм (157% от РСН)
  3. Индейка и курица — 3 110 мг/100 грамм (148% от РСН)
  4. Свинина — 2 757 мг/100 грамм (131% от РСН)
  5. Жареные соевые бобы — 2 634 мг/100 грамм (125% от РСН)
  6. Тунец — 2 590 мг/100 грамм (123% от РСН)
  7. Креветки — 2 172 мг/100 грамм (103% от РСН)
  8. Семена тыквы — 1 386 мг/100 грамм (66% от РСН)
  9. Яйца — 912 мг/100 грамм (43% от РСН)
  10. Белые бобы — 668 мг/100 грамм (32% от РСН)

Несмотря на то, что все эти продукты богаты лизином, мы рекомендуем по возможности избегать потребления свинины, сои и креветок, так как они часто содержат токсины. Что касается других видов мяса, сыров и яиц, убедитесь, что на Вашем столе присутствуют органические продукты высокого качества.

Нормы потребления аминокислот

Для определения дневной потребности в аминокислотах необходимо знать два показателя:

  • сколько нужно белка человеку в сутки;
  • количество аминокислоты в каждом грамме белка.

Количество кислоты в 1 г белка:

Аминокислота Кол-во мг кислоты в 1 г белка
Триптофан 10
Лизин 55
Валин 50
Лейцин 70
Треонин и изолейцин 40
Метионин 35
Тирозин 60

После умножения доли белка на необходимое количество аминокислоты, можно узнать суточную потребность в каждом веществе. Для определения продуктов питания следует посмотреть список продуктов, содержащих аминокислоты в таблице, которая расположена выше.

Необходимое количество белка для человека:

Вес человека Количество белка
40-60 кг От 65 до 120 г
60-8- кг От 75 до 130 г
80-100 кг От 85 до 150 г
Свыше 100 кг От 100 до 170 г

Нормы потребления аминокислот могут изменяться у разных групп людей. Для спортсменов, которым необходимо покрывать повышенную потребность организма в белке, норма в день может составлять от 1,5 до 2,5 г на 1 кг веса тела.

Для детей

В детском возрасте повышен основной обмен в 1,5-2 раза в силу высокой интенсивности обменных процессов. Соотношение белков, жиров и углеводов должно составлять в младшем возрасте – 1:1:3, в старшей возрастной группе – 1:1:4.

С годами у детей повышается потребность в незаменимых аминокислотах, триптофане, гистидине, лизине, соответственно повышается употребление мясных, рыбных, яичных продуктов. Удельный вес животного белка в младшем школьном возрасте должен составлять 60-70%, в период школьного возраста – 65% от общего суточного потребления.

Нормы аминокислот для детей по рекомендации ВОЗ:

Аминокислота Количество в мг
Триптофан 1,2
Изолейцин 4,2
Лизин 4,8
Треонин 2,8
Фенилаланин 4,2
Гистидин 1,6
Валин 4,3
Метионин 3,4
Лейцин 6,7

Для детей с нарушенным эндогенным синтезом необходим тирозин, цистеин, недостаток которых приводит к нарушениям функции нервной системы, остановке роста.

Для детей младше 6 лет необходимо дополнительное поступление в организм аргинина и гистидина, потому что эти кислоты начинают синтезироваться в организме только с этого возраста. В растущем организме чаще всего встречается дефицит 3 аминокислот: метионина, лизина, и триптофана.

Для взрослых

Поскольку организм не может вырабатывать незаменимые аминокислоты, они должны поступать вместе с пищей. В природе существует много продуктов, богатых этими кислотами, что позволяет человеку удовлетворить свои потребности в них.

Рекомендуемые нормы незаменимых аминокислот по рекомендации ВОЗ:

Аминокислота Норма потребления на 1 кг веса тела Признаки недостаточности
Гистидин 10 мг Анемия, нарушение умственного развития у детей
Изолейцин 20 мг Повышенный диурез, потеря массы тела
Лизин 38 мг Понижение слуха, тошнота, головная боль, замедление роста костной ткани
Метионин 15 мг Цирроз печени, ожирение, мышечная атрофия, анемия, кровотечения.
Фенилаланин 26 мг Нарушения функций надпочечников, щитовидной железы, гипотония.
Треонин 16 мг Повышенный диурез, потеря веса
Триптофан 5 мг Анемия, выпадение волос
Валин 26 мг Гипертензия, расстройство движений
Лейцин 39 мг Задержка физического развития, роста

Аминокислоты, незаменимые и заменимые, необходимы в повышенных количествах в следующих случаях:

  • активного роста организма;
  • интенсивных занятий умственным и физическим трудом;
  • болезни, выздоровления;
  • профессионального занятия спортом.

При имеющихся врождённых нарушениях, связанных с усвоением аминокислот, отклонении в работе ЖКТ, потребность в них может снижаться.

Для беременных

Правильное питание беременной и кормящей женщины лежит в основе выживаемости ребёнка и формирования у него высокого уровня здоровья в последующей жизни. Исследования показали, что недостаток таких кислот, как аланин, цистеин, фенилаланин, тирозин и триптофан могут привести к недоразвитию плода, например, расщелине в детском позвоночнике.

Дефицит фолиевой кислоты может привести к ненормальному развитию плода. Особую роль она играет в период первого триместра, когда закладывается основа будущего ребёнка.

Потребность в белке для беременных может варьироваться от 40 до 70 г в день, в зависимости от веса тела. Рассчитать количество белка можно исходя из нормы- 2 г на 1 кг веса. Предпочтение лучше отдавать продуктам, имеющим хорошую усвояемость. Организм здорового человека с лёгкостью усваивает 90% животного белка и лишь 70% белка растительного.

Для нормального физического развития, повышения работоспособности, сопротивляемости к инфекциям, организму необходимо рациональное присутствие в рационе белков. А потребность в белке во многом зависит от качественного состава аминокислот, заменимых, и прежде всего, незаменимых.

Оформление статьи: Лозинский Олег

Роль аминокислот в питании

Человек и животные используют в обмене веществ азот, поступающий с пищей в виде аминокислоты, главным образом в составе белков, некоторых других органических соединений азота, а также аммонийные соли. Из этого азота путем процессов аминирования и трансаминирования (см. Переаминирование) в организме образуются различные аминокислоты. Некоторые аминокислоты не могут синтезироваться в животном организме, и для поддержания жизни эти аминокислоты должны обязательно поступать в организм с пищей. Такие аминокислоты называют незаменимыми. Незаменимые аминокислоты для человека: триптофан (см.), фенилаланин (см.), лизин (см.), треонин (см.), валин (см.), лейцин (см.), метионин (см.) и изолейцин (см.). Остальные аминокислоты относят к заменимым, но некоторые из них заменимы лишь условно. Так, тирозин образуется в организме только из фенилаланина и при поступлении последнего в недостаточном количестве может оказаться незаменимым. Подобно этому цистеин и цистин могут образоваться из метионина, но необходимы при недостатке этой аминокислоты. Аргинин синтезируется в организме, но скорость его синтеза может оказаться недостаточной при повышенной потребности (особенно при активном росте молодого организма). Потребность в незаменимых аминокислот изучалась в исследованиях по азотистому равновесию, белковому голоданию, учету потребляемой пищи и другое. Тем не менее потребность в них не поддается точному учету и может быть оценена лишь приблизительно. В табл. 4 приведены данные о рекомендуемых и безусловно достаточных для человека количествах незаменимых аминокислот. Потребность в незаменимых аминокислот возрастает в периоды интенсивного роста организма, при повышенном распаде белков при некоторых заболеваниях.

Таблица 4. Рекомендуемое и безусловно достаточное для человека количество незаменимых аминокислот (г в сутки)
Аминокислота Рекомендуемое количество Безусловно достаточное количество
L-Валии 0,80 1,60
L-Изолейцин 0,70 1,40
L-Лейцин 1,10 2,20
L-Лизин 0,80 1,60
L-Метионин 1,10 2,20
L-Треонин 0,50 1,00
L-Триптофан 0,25 0,50
L-Фенилалашга 1,10 2,20

Принадлежность аминокислоты к заменимым или незаменимым для различных организмов не совсем одинакова. Так, например, аргинин и гистидин, относящиеся к заменимым аминокислотам для человека, незаменимы для кур, а гистидин также для крыс и мышей. Аутотрофные организмы (см.), к которым относятся растения и многие бактерии, способны синтезировать все необходимые аминокислоты. Однако ряд бактерий нуждается в наличии тех или иных аминокислот в культуральной среде. Известны виды или штаммы бактерий, избирательно нуждающиеся в наличии определенных аминокислот. Такие мутантные штаммы, рост которых обеспечивается только при добавлении в среду определенной кислоты, называют ауксотрофными (см. Ауксотрофные микроорганизмы). Ауксотрофные штаммы растут на среде, полноценной в остальных отношениях, со скоростью, пропорциональной количеству добавленной незаменимой аминокислоты, поэтому их иногда применяют для микробиологического определения содержания данной аминокислоты в тех или иных биологических материалах, например Гатри метод (см.).

Недостаток в питании одной из незаменимых аминокислот приводит к нарушению роста и общей дистрофии, но отсутствие некоторых аминокислот может давать также специфические симптомы. Так, недостаток триптофана нередко дает пеллагроподобные явления, поскольку из триптофана в организме образуется никотиновая кислота (у экспериментальных крыс при недостатке триптофана наблюдается помутнение роговицы, катаракта, выпадение шерсти, анемия); недостаток метионина приводит к поражению печени и почек; недостаток валина вызывает неврологические симптомы и так далее.

Полноценное питание обеспечивается при сбалансированном содержании отдельных аминокислот в пище. Избыток некоторых аминокислот также неблагоприятен. Избыток триптофана приводит к накоплению продукта его обмена — 3-оксиантраниловой кислоты, которая может вызывать опухоли мочевого пузыря. При несбалансированном питании избыток некоторых аминокислот может нарушать обмен или использование других аминокислот и вызывать недостаточность последних.

Классификация аминокислот

Характерные свойства отдельных Аминокислот определяются боковой цепью, то есть радикалом, стоящим у α-углеродного атома. В зависимости от строения этого радикала аминокислоты подразделяют на алифатические (к ним относится большинство аминокислот), ароматические (фенилаланин и тирозин), гетероциклические (гистидин и триптофан) и иминокислоты (см.), у которых атом азота, стоящий при α-углеродном атоме, соединен с боковой цепью в пирролидиновое кольцо; к ним относятся пролин и оксипролин (см. Пролин).

По числу карбоксильных и аминных групп аминокислоты делят следующим образом.

Моноаминомонокарбоновые аминокислоты содержат одну карбоксильную и одну аминную группы; к ним относится большая часть аминокислот (их рI лежит ок. рН 6).

Моноаминодикарбоновые аминокислоты содержат две карбоксильные и одну аминную группы. Аспарагиновая и глутаминовая кислота (см.) обладают слабокислыми свойствами.

Диаминомонокарбоновые кислоты — аргинин (см.), лизин (см.), гистидин (см.) и орнитин — в водном растворе диссоциируют преимущественно как основания.

По химическому составу замещающих групп различают: оксиаминокислоты (содержат спиртовую группу) — серин и треонин (см.), серосодержащие аминокислоты (содержат в своем составе атомы серы) — цистеин, цистин (см.) и метионин (см.); амиды (см.) дикарбоновых аминокислот — аспарагин (см.) и глутамин (см.) и тому подобное Аминокислоты с углеводородным радикалом, например аланин, лейцин, валин и другие, придают белкам гидрофобные свойства; если радикал содержит гидрофильные группы, как, например, у дикарбоновых аминокислот, они сообщают белку гидрофильность.

Помимо уже упомянутых аминокислот (см. таблицу и соответствующие статьи), в тканях человека, животных, растений и у микроорганизмов найдено еще более 100 аминокислот, многие из которых играют важную роль в живых организмах. Так, орнитин и цитруллин (относятся к диаминокарбоновым аминокислотам) играют важную роль в обмене веществ, в частности в синтезе мочевины у животных (см. Аргинин, Мочевина). В организмах найдены высшие аналоги глутаминовой кислоты: α-аминоадипиновая кислота с б атомами углерода и α-аминопимелиновая кислота с 7 атомами углерода. В составе коллагена и желатина найден оксилизин:

имеющий два асимметрических атома углерода. Из алифатических моноаминомонокарбоновых аминокислот встречаются α-аминомасляная кислота, норвалин (α-аминовалериановая кислота) и норлейцин (α-ампнокапроновая кислота). Последние две получены синтетически, но не встречаются в составе белков. Гомосерин (α-амино-γ-оксимасляная кислота) является высшим аналогом серина. Соответственно α-амино-γ-тиомасляная кислота, или гомоцистеин, является подобным аналогом цистеина. Две последние аминокислоты наряду с лантионином:

[НООС—CH(NH2)—СН2—S-CH2—CH(NH2)—COOH]

и цистатионином:

[НООС—CH(NH2)—CH2—S—СН2—СН2—CH(NH2)—COOH]

принимают участие в обмене серосодержащих аминокислот 2,4-Диоксифенилаланин (ДОФА) является промежуточным продуктом обмена фенилаланина (см.) и тирозина (см.). Из тирозина образуется такая аминокислота, как 3,5-дийодтирозин — промежуточный продукт образования тироксина (см.). В свободном состоянии и в составе некоторых природных веществ встречаются аминокислоты, метилированные (см. Метилирование) по азоту: метилглицин, или саркозин [CH2(NHCH3) COOH], а также метилгистидин, метилтриптофан, метиллизин. Последний недавно обнаружен в составе ядерных белков — гистонов (см.). Описаны также ацетилированные производные аминокислот, в том числе ацетиллизин составе гистонов.

Помимо α-аминокислот в природе, главным образом в свободном виде и в составе некоторых биологически важных пептидов, встречаются Аминокислот, содержащие аминогруппу у других атомов углерода. К ним относятся β-аланин (см. Аланин), γ-аминомасляная кислота (см. Аминомасляные кислоты), играющая важную роль в функционировании нервной системы, δ-аминолевулиновая кислота, являющаяся промежуточным продуктом синтеза порфиринов. К аминокислотам относят также таурин (H2N—CH2—CH2—SO3H), образующийся в организме в процессе обмена цистеина.

Критерии выбора аминокислот в магазине

  1. Состав. В продаже можно встретить изолированные аминокислоты и смесь. Первые являются чистой разновидностью какой-либо аминокислоты, которая выполняет конкретную задачу в организме. Смесь работает комплексно, так как это сочетание сразу нескольких аминокислот. Выбирать нужно исходя из цели, которую ставите перед собой.
  2. Форма выпуска. Это может быть порошок, капсулы или таблетки, жидкость. Последняя разновидность отличается самой быстрой скоростью усвоения. Капсулы наиболее удобны, если нужно брать с собой. А вот порошок – это четкое соблюдение пропорций, необходимость смешивать коктейль. Одним словом, не очень удобно, зато бюджетно.
  3. Цена. Аминокислотные комплексы – это достаточно дорогое удовольствие. Экономить при покупке такого спортивного питания не стоит, потому что есть риск купить продукт низкого качества. Гораздо разумнее брать небольшие упаковки или “пробники”, чтобы протестировать комплекс и выбрать, какой для вас является лучшим и самым эффективным.
  4. Органолептические свойства. Качественные порошковые аминокислотные комплексы должны хорошо растворяться в жидкости без образования комочков. Цвет обычно белый. Запах может меняться в зависимости от добавленных ароматизаторов или их отсутствия. Вкус, как правильно, немного горький.
  5. Производитель. Рекомендуем доверять только проверенным брендам с многолетней репутацией на рынке. Такие компании не жертвуют качеством и выбирают только лучшее сырье, а также применяют современные технологии и мощное производственное оборудование. Рекомендуем покупать аминокислоты только в специализированных онлайн и офлайн магазинах, чтобы не столкнуться с фальсификатом, который может навредить здоровью. Если возникает сомнение, запрашивайте у продавца сертификаты качества.

Таблица содержания аминокислот в пище

Список продуктов, содержащих незаменимые аминокислоты в мг на 100 г продукта:

Продукты Мети-онин Треонин Фенилаланин Лейцин Гистидин Лизин Изолейцин Валин Трип-тофан
Говядина 529 597 788 1735 806 2010 1007 1158 229
Свинина 345 655 580 1075 580 1240 708 830 190
Куры 570 960 890 1826 380 1697 827 900 332
Индейка 520 962 853 1820 437 1933 1030 1020 355
Треска 502 893 801 1299 455 1499 1499 902 220
Сельдь 352 899 698 1601 499 1798 899 999 248
Минтай 352 899 700 1301 402 1800 900 1001 202
Молоко 67 1209 140 279 85 320 150 220 52
Творог 260 450 490 920 310 630 540 690 200
Сыр 840 1200 1750 1600 1590 1860 1320 1550 810
Кефир 60 110 140 160 80 200 175 190 66
Гречка 250 499 545 676 290 635 525 580 175
Рис 135 250 355 630 155 265 320 420 75
Овсянка 145 355 500 785 200 425 450 570 165
Фасоль 290 880 1125 1750 610 1580 1020 1110 255
Горох 165 940 1110 1206 390 9854 1300 999 260
Соя 562 1380 1620 2680 630 2080 1820 2080 500
Хлеб пшеничный 140 280 390 350 180 230 300 380 90
Ржаной 60 170 300 530 100 180 200 266 70
Макароны 120 480 700 130 140 360 122 130

Незаменимые аминокислоты в продуктах всегда содержатся не одной группой, а несколькими. Пища животного происхождения наиболее богата сразу многими аминокислотами. Так, для получения суточной дозы аминокислот можно съесть 500 г творога или 300 г мяса говядины.

Из Дополнительных материалов

При написании последовательности аминокислотных остатков в полипептидной цепи Международный союз теоретической и прикладной химии и Международный биохимический союз предложили пользоваться сокращенными названиями аминокислоты, состоящими обычно из первых трех букв полного названия соответствующей аминокислоты (см. таблицу). Использование интернациональной латинизированной стандартной системы символов и сокращений представляет большие преимущества с точки зрения сбора, обработки и отыскания научной информации, устранения ошибок при переводе текстов с иностранных языков и тому подобное. Унифицированные сокращенные названия химических соединений, в том числе и аминокислот, особенно важны не только в международном отношении, но и для применения внутри СССР, где научная литература издается на десятках языков, различных по алфавиту, лексике и начертанию специальных терминов и их сокращенных обозначений.

Сокращенные обозначения свободных аминокислот не следует употреблять в тексте работ, это допустимо только в таблицах, списках, схемах.

Там, где последовательность аминокислотных остатков в пептидной цепи известна, символы остатков пишут по порядку, соединяя их дефисами; та цепь или часть цепи, где последовательность соединения аминокислотных остатков неизвестна, заключается в круглые скобки, причем символы остатков аминокислоты разделяются запятыми. При написании линейных пептидов или белков на левом конце установленной последовательности (то есть на ее N-конце) ставится символ аминокислоты, несущей свободную аминогруппу, а на правом конце (на C-конце) — символ остатка аминокислоты, несущего свободную карбоксильную группу. Полипептидную цепь предпочтительнее изображать горизонтально, а не вертикально расположенной последовательностью. Символы аминокислоты обозначают природные (L-) формы, их антиподы — символом D-, который ставят непосредственно перед символом аминокислоты, не отделяя от него дефисом (например, Лей-DФен-Гли).

Символы менее распространенных в живой природе аминокислоты особо оговариваются в каждой публикации. Рекомендуется соблюдать лишь следующие принципы, например, гидроксиаминокислоты (оксиаминокислоты): гидроксилизин (оксилизин) — Hyl (Оли) и так далее; алло-аминокислоты: алло-изо лейцин — aile (аИле), алло-оксилизин — aHyl (аОли); нораминокислоты: норвалин —Nva (Нва), норлейцин — Nle (Нле) и т. д.

Таблица. Сокращенное написание символов аминокислот, наиболее распространенных в живой природе

Полное название аминокислоты

Международные символы

Символы, принятые в русских научных изданиях

Аланин

Ala

Ала

Аргинин

Arg

Apr

Аспарагин

Asn

Асн

Аспарагиновая кислота

Asp

Асп

Аспарагиновая кислота и л pi аспарагин (если
различие не установлено)

Asx

Асх

Валин

Val

Вал

Гидроксипролин

Hyp

Опр

Гистидин

His

Г ис

Глицин

Gly

Гли

Глутамин

Gin

Гли

Глутаминовая кислота

Glu

Глу

Глутаминовая кислота или глутамин (если различие не
установлено)

Glx

Глх

Изолейцин

lie

Иле

Лейцин

Leu

Лей

Лизин

Lys

Лиз

Метионин

Met

Мет

Пролин

Pro

Про

Серин

Ser

Сер

Тирозин

Туг

Тир

Треонин

Thr

T ре

Триптофан

Trp

Трп

(иногда

Три)

Фенилаланин

Phe

Фен

Цистеин

Cys

Цис

Аминокислоты. История

Первые несколько аминокислот были открыты в начале 19 века. В 1806 году французские химики Луи Николя Воклен и Пьер Жан Робике изолировали в аспарагине первую аминокислоту, аспарагин. Цистеин был обнаружен в 1810 году, хотя его мономер, цистеин, оставался неоткрытым аж до 1884 года. Глицин и лейцин были обнаружены в 1820 году. Термин «аминокислота» был введен в английский язык в 1898 году. Было установлено, что аминокислоты можно получить из белков путем ферментативного расщепления или кислотного гидролиза. В 1902 г. Эмиль Фишер и Франц Гофмейстер предположили, что белки являются результатом связи между аминогруппой одной аминокислоты с карбоксильной группой другой, образующих линейную структуру, которую Фишер назвал пептидом.

Растительный и животный белок: какой лучше?

Нет хорошего или плохого белка, организму нужны все виды в достаточных количествах. Употребляя только белок, содержащийся в животных продуктах, человек будет испытывать дефицит тех полезных веществ, которые содержатся в растительном белке, и наоборот

Не только соотношение белков играет роль, важно ещё наличие хороших и плохих жиров, углеводов

Продукты, содержащие полезные аминокислоты, но при этом имеющие много животных жиров, представляют опасность для здоровья, особенно для тех, кто следит за своим весом. Рацион должен быть разнообразным и покрывать все потребности человека в питательных веществах.

Сводная таблица по номинантам рейтинга

Аминокислота Вкусы Недостатки Размер порции Найти в магазине
“Maxler” Glutamine арбуз, нейтральный горький вкус 5 Yandex.Market
“Be First” Beta Alanine Powder нейтральный может вызывать побочные эффекты при передозировке 4 Yandex.Market
“Prime Kraft” AAKG 2:1 ананас, вишня, клубника, нейтральный, яблоко только для пампинга 4 Yandex.Market
“Myprotein” Citrulline Malate 2:1 нейтральный высокая цена 2 Yandex.Market
“vplab” HMB+ нейтральный высокая цена 2 капсулы Yandex.Market
“Maxler” Arginine 1000 Max нейтральный большой размер таблетки 1 таблетка Yandex.Market
“NOW” L-Tyrosine 500 mg нейтральный высокая цена 1 капсула Yandex.Market
“Be First” L-Tryptophan нейтральный не обнаружено 1 капсула Yandex.Market
“BioTechUSA” Liquid Amino апельсин, лимон высокая цена 40 мл Yandex.Market
“QNT” Amino Liquid Formula ягодный высокая цена 25 мл Yandex.Market
“Maxler” Amino Magic Fuel апельсин, энерджи высокая цена 45 мл Yandex.Market
“Scitec Nutrition” Amino Liquid 50 вишня высокая цена 15 мл Yandex.Market

Незаменимые аминокислоты

Что подразумевается под словом «незаменимые»? «Незаменимые» означает, что эти аминокислоты не могут быть синтезированы в организме и должны поступать в него с пищей. Существует 9 незаменимых аминокислот, в числе которых знаменитая группа ВСАА.

Аминокислоты с разветвленными боковыми цепями (ВСАА)

Лейцин, изолейцин и валин

Из 9-ти незаменимых аминокислот 3 относятся к категории аминокислот с разветвленными цепями. Это лейцин, изолейцин и валин. ВСАА имеют уникальное химическое строение по сравнению с другими незаменимыми аминокислотами, и поэтому обладают особыми свойствами. В отличие от остальных аминокислот, ВСАА быстрее и лучше усваиваются организмом, то есть они абсорбируются не в желудке, а фактически поступают непосредственно в мышцы. Чтобы узнать больше о ВСАА, читайте нашу статью «ВСАА. Что такое аминокислоты с разветвленными цепями?».

Другие незаменимые аминокислоты

Остальные незаменимые аминокислоты: гистидин, метионин, фенилаланин, треонин, триптофан и лизин, – необходимы организму для выполнения ряда физиологических функций.

Гистидин

Гистидин – ароматическая аминокислота, которая выполняет ряд жизненно важных функций в организме, в том числе участвует в синтезе гемоглобина, функционировании иммунной системы и восстановлении тканей

Гистидин является важной аминокислотой в период роста человека, а также при реабилитации после болезни

Лизин

Лизин играет важную роль в функционировании иммунной системы. Он также наряду с полузаменимыми кислотами участвует в синтезе коллагена, чтобы кожа, волосы и ногти оставались здоровыми.

Триптофан

Триптофан – это незаменимая ароматическая аминокислота, которая содержит ядро индола. Она выполняет ряд функций в организме, в частности играет роль химического посыльного в нервной системе. В отличие от других аминокислот, L-триптофан не растворяется в воде и устойчив к теплу, то есть в процессе обработки не теряет большую часть полезных свойств.

Метионин

Метионин — это аминокислота с неприятным запахом (содержит атом серы), которая является предшественником других аминокислот, таких как таурин. Ее антиоксидантные свойства способны защищать организм, подавляя в нем действие вредных веществ. Она также участвует в построении белков и выработке различных гормонов, в том числе адреналина и мелатонина.

Фенилаланин

Фенилаланин является неполярной аминокислотой, которая обладает бензильной боковой цепью и известна своими антидепрессантными свойствами. Она играет важную роль в выработке допамина и адреналина.

Треонин

Эта аминокислота является полярной незаряженной, и после усвоения преобразуется в пируват, играя важную роль в производстве глюкозы и выработке энергии АТФ.

Аминокислоты в человеческом организме

Природные аминокислоты – это 200 нужных соединений и 200 уникальных формул. Они встречаются в свободном или связанном виде. Когда АМК синтезируются самостоятельно, проблем не возникает

Основное внимание следует обращать на незаменимые компоненты белковых молекул, которые нужно получать извне. У них свои формулы и нужные организму, основные свойства:

  • улучшение работы мозга за счет способности передачи нервных импульсов (валин, лейцин, триптофан);
  • накопление кальция (лизин),
  • усиление липидного обмена (метионин);
  • нормализация деятельности ЦНС (изолейцин, метионин, треонин);
  • улучшение аппетита (фенилаланин);
  • снижение болевого порога (фенилаланин).

Признаки недостатка и переизбытка аминокислот

Нехватка или избыточное содержание АМК влияет на общее состояние организма. При их недостатке наблюдается:

  • плохой аппетит;
  • состояние сонливости и слабости;
  • торможение роста и развития;
  • выпадение волос;
  • плохое состояние кожи;
  • анемия;
  • слабая иммунная защита.

Свойства АМК таковы, что их переизбыток тоже влияет на здоровье:

  1. При высоком содержании тирозина изменяется баланс в работе щитовидки, развивается гипертония.
  2. При избытке гистидина возможны болезни суставов, аневризма аорты. Возникает ранняя седина.
  3. При большой концентрации метионина велик риск развития инсульта или инфаркта.

Такие проблемы возможны при нехватке ряда витаминов (А, С, группы В) и селена. В их присутствии происходит нейтрализация избыточного содержания аминокислот.

Суточная потребность в аминокислотах

Каждая аминокислота со своей индивидуальной формулой и свойствами нужна организму в определенных количествах. Подсчет суточной нормы нужного организму набора сложен, поскольку зависит от ее содержания в 1 г белка. Общая потребность в нужных аминокислотах составляет 0,5-2 г в день.

Если суточная норма белка примерно 120 г, то человек получает:

  • 8,4 г лейцина;
  • 4,8 г изолейцина;
  • 6 г валина.

Это те самые ВССА, которые покрывают дефицит незаменимых аминокислот. Суточная норма нужного белка для мужчин – 65-120 г, для женщин – 60-90 г. Половина этой нормы приходится на белки животного происхождения. Аминокислоты входят в состав белков, поэтому  возможно просчитать, в каком количестве они попадают в организм.

Активный метаболизм аминокислот происходит:

  • во время роста организма;
  • при активных занятиях спортом;
  • при серьезных умственных и физических нагрузках;
  • в период болезни и в процессе выздоровления.

Если организм здоров и потребление белка соответствует суточной норме, то можно не задумываться над вопросом, как правильно принимать аминокислоты. Больше всего нужных компонентов белка содержится в мясе, молоке и яйцах. Их правильное распределение в течение дня позволит насытить организм необходимыми веществами с разными формулами и с важными для метаболизма свойствами.

Дневная потребность

Суточная норма ПНЖК варьируется в диапазоне 10 – 15 грамм.

Учитывая, что эссенциальные жиры конкурируют в организме, оптимальное соотношение липидов типа омега-6 к омега-3 составляет 6 : 1. Иначе нарушается синтез триглицеридов. Физиологическая потребность в омега-6 составляет 8 – 10 грамм в сутки, в омега-3 не превышает 1 – 2 грамма.

Количество полиненасыщенных кислот в рационе питания следует увеличить в следующих случаях:

  • при интенсивных занятиях спортом (физическим трудом);
  • в периоды беременности и лактации;
  • при аутоиммунных заболеваниях, дисфункции поджелудочной железы (диабете), кожных высыпаниях, простатите;
  • в преклонном (55 – 85 лет) и детском возрасте (0 – 12 лет);
  • при проживании в северных регионах;
  • в холодное время года.

Интересно, что дефицит липидов омега-6 в организме человека встречается крайне редко, в отличие от ПНЖК типа омега 3.Рассмотрим, как проявляется недостаточность липидов последней группы.

Признаки нехватки эйкозапентаеновой и докозагексаеновой кислот в повседневном меню:

  • сухость кожных покровов, в том числе обострение псориаза, экземы;
  • нарушение координации;
  • ухудшение зрения;
  • задержка роста (у детей);
  • снижение когнитивных функций, в том числе способности к обучению;
  • слабость в теле;
  • онемение или покалывание конечностей;
  • повышение артериального давления;
  • гиперхолестеринемия;
  • перепады настроения;
  • угревая сыпь;
  • тяга к алкогольным напиткам;
  • депрессивные состояния;
  • расслаивание ногтей;
  • выпадение волос.

Продолжительный дефицит эссенциальных липидов ведёт к возникновению аутоиммунных заболеваний, тромбозов, нервных расстройств, сердечно-сосудистых патологий. В тяжёлых случаях развиваются психические нарушения.

Однако, избыточный приём полиненасыщенных жиров, в частности омега-6, на фоне низкого потребления омега-3, ведёт к усилению развития воспалительных процессов, сужению просвета кровеносных сосудов, увеличению риска развития системных заболеваний, возникновению онкологии, сахарного диабета, инсульта, коронарной недостаточности, депрессивных состояний. Поэтому строго контролируйте количество поступления ПНЖК в день.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector