Коэффициент теплопроводности газа
Содержание:
- «Сухой лед» и прочие полезные свойства диоксида углерода
- Углекислый газ: хранение и транспортировка
- Плотность газов и паров при нормальных условиях
- Формула углекислого газа
- Применение
- Получение и применение
- Причины образования инея на баллоне
- Воздействие на человека
- Как влияет диоксид углерода на организм человека
- Что за соединения: CO, CO2, NOx?
- Физические свойства
- Углекислый газ и мы: чем опасен CO2
- Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа:
«Сухой лед» и прочие полезные свойства диоксида углерода
В повседневной практике углекислый газ используется достаточно широко. Например, газированная вода с добавками ароматных эссенций – прекрасный освежающий напиток. В пищевой промышленности диоксид углерода используется и как консервант — он обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.
Углекислотными огнетушителями пользуются при пожарах. Биохимики нашли, что удобрение… воздуха углекислым газом весьма эффективное средство для увеличения урожайности различных культур. Пожалуй, такое удобрение имеет единственный, но существенный недостаток: применять его можно только в оранжереях. На заводах, производящих диоксид углерода, сжиженный газ расфасовывают в стальные баллоны и отправляют потребителям. Если открыть вентиль, то из отверстия с шипением вырывается… снег. Что за чудо?
Все объясняется просто. Работа, затраченная на сжатие газа, оказывается значительно меньше той, которая требуется на его расширение. И чтобы как-то компенсировать возникающий дефицит, углекислый газ резко охлаждается, превращаясь в «сухой лед». Он широко используется для сохранения пищевых продуктов и перед обычным льдом имеет значительные преимущества: во-первых, «хладопроизводительность» его вдвое выше на единицу веса; во-вторых, он испаряется без остатка.
Углекислый газ используется в качестве активной среды при сварке проволокой, так как при температуре дуги углекислота разлагается на угарный газ СО и кислород, который, в свою очередь, и входит во взаимодействие с жидким металлом, окисляя его.
Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.
Углекислый газ: хранение и транспортировка
Хранение СО осуществляется в баллонах чёрного цвета, на корпусе которых обязательно должна быть надпись «Углекислота».
Кроме этого, на ёмкости наносится маркировка, по которой можно получить информацию о производителе баллона, весе пустой ёмкости, а также узнать дату последнего освидетельствования. Нельзя использовать углекислотные баллоны, у которых:
- Истёк срок освидетельствования.
- Имеются повреждения.
- Неисправны вентили.
Транспортировка наполненных газом баллонов должна осуществляться по следующим правилам:
- Транспортировать ёмкости только в горизонтальном положении. Вертикальное размещение допускается только в том случае, если имеются специальные ограждения, которые препятствуют падению баллона во время перевозки.
- Для безопасного перемещения на баллонах должны быть резиновые кольца.
- Не допускать механических воздействий, а также чрезмерного нагрева.
- Запрещается перевозка углекислотных баллонов в торговых аппаратах.
Кроме этого, техникой безопасности запрещается переносить баллоны вручную или перекатывать их по земле.
Хранение баллонов с углекислотой может осуществляться как в специально оборудованных помещениях, так и под открытым небом. В зданиях ёмкости следует размещать на расстоянии не менее 1 метра от отопительных приборов. При хранении на улице необходимо оградить ёмкости от воздействия прямых солнечных лучей и осадков, поэтому размещать резервуары таким способом рекомендуется под навесом. Если хранение баллонов осуществляется в неотапливаемом помещении или под открытым небом, то в зимнее время необходимо следить за тем, чтобы ёмкости не охлаждались ниже минус 40 градусов Цельсия.
Плотность газов и паров при нормальных условиях
В таблице приведена плотность газов и паров при нормальных условиях – температуре 0°С и нормальном атмосферном давлении (760 мм. рт. ст.). Для некоторых газов, например газа стибина, плотность дана при температуре 15°С и давлении 754 мм. рт. ст.
Значение плотности газов в таблице указано в размерности кг/м 3 для следующих газов и паров: азот N2, аммиак NH3, аргон Ar, ацетилен C2H2, бор фтористый BF3, бутан C4H10, водород: бромистый HBr, йодистый HI, мышьяковистый H3As, селенистый H2Se, сернистый H2S, теллуристый H2Te, фосфористый H3P, хлористый HCl, воздух, гелий He, германия тетрагидрид GeH4, диметиламин (CH3)2NH, дифтордихлорметан CF2Cl2, дициан C2N2, закись азота N2O, кислород O2, кремний фтористый SiF4, гексагидрид Si2H6, тетрагидрид SiH4, криптон Kr, ксенон Xe, метан CH4, метиленхлорид CH3Cl, метиламин CH5N, метиловый эфир C2H6O, метилфторид CH3F, метилхлорид CH3Cl, мышьяк фтористый AsF5, неон Ne, нитрозил фтористый NOF и хлористый NOCl, озон O3, окись азота NO, пропан C3H8, пропилен C3H6, радон Rn, двуокись серы SO2 и гексафторид серы SF2, силан диметил SiH2(CH3)2, метил SiH3CH3, хлористый SIH3Cl, трифтористый SiHF3, стибин SbH3, сульфурил фтористый SO2F2, триметиламин (CH3)3N, триметилбор (CH3)3B, двуокись углерода CO2, окись углерода CO, сероокись COS, фосфор фтористый PF2, оксифторид POF3, пентафторид PF5, фтор F2, фторокись азота NO2, двуокись хлора ClO2, окись хлора Cl2O, хлорокись азота NO2Cl, этан C2H6, этилен C2H4, окись азота NO.
Формула углекислого газа
Двуокись углерода (двуокись углерода, двуокись углерода, моноксид углерода (IV), карбоновый ангидрид, сухой лед) представляет собой бесцветный газ без запаха со слегка кислотным вкусом. Сформировано путем объединения двух элементов: углерода и кислорода.
Химические, структурные и электронные формулы двуокиси углерода
Химическая формула: ( mathrm 2 )
Структурная формула: ( O=C=O )
Химические, структурные и электронные формулы двуокиси углерода
Молярная масса: 44,01 г / моль.
Физические свойства двуокиси углерода
В стандартных условиях — газ без цвета и запаха, с кислым вкусом. При атмосферном давлении в жидком состоянии не существует, а сильное охлаждение кристаллизуется в виде «сухого льда» — белой снежной массы. Температура сублимации составляет -78 ° С. В обычных условиях 0,9 объема двуокиси углерода растворяют в одном объеме воды.
Химические свойства двуокиси углерода
Это оксид кислоты.
При растворении в воде образуется угольная кислота:
( C O_+H_ O leftrightarrow H_ C O_ )
Он взаимодействует с основными оксидами и основаниями с образованием карбонатов и бикарбонатов (соли углекислоты):
( N a_ O+C O_ rightarrow N a_ C O_ )
( 2 K O H+C O_ rightarrow K_ C O_+H_ O )
( mathrm+mathrm_(избыток) rightarrow K H C O_ )
Не поддерживает горение, но при нагревании может окислять активные металлы:
( C O_+2 M g rightarrow 2 M g O+C )
Качественная реакция — мутность извести ( (mathrm(mathrm) 2) ) из-за образования белого осадка карбоната кальция:
( mathrm(mathrm)_+mathrm_ rightarrow mathrm_ downarrow+mathrm_ mathrm )
Углекислый газ образуется гниением и сжиганием органического вещества. Содержится в воздухе и минеральных источниках, высвобождаемых во время дыхания животных и растений.
В промышленности углекислый газ производится термическим разложением карбонатов:
В лаборатории — действием сильных кислот на карбонаты или бикарбонаты:
( mathrm_+2 mathrm rightarrow mathrm_+mathrm_ mathrm+mathrm_ uparrow )
Примеры решения проблем
Рассчитать количество двуокиси углерода ( (mathrm) ), которое может быть получено путем сжигания 12 тонн угля, если выход продукта составляет 90% от теоретически возможного.
Напишите уравнение для реакции горения:
Рассчитайте количество углеродного вещества по формуле:
Согласно уравнению реакции
( n(C)=nleft(C O_right)=1000000 моль )
1 моль газа в нормальных условиях составляет 22,4 литра.
Рассчитайте теоретический объем углекислого газа:
( Vteorleft(C O_right)=1000000 cdot 22,4=2240000=22400м3 )
Мы вычисляем практический объем углекислого газа:
( Vpractleft(C O_right)=22400 cdot 0,9=20160м3 )
Объем производимого диоксида углерода равен 20160 м3.
Рассчитать объем 20% раствора соляной кислоты (плотность = 1,1 г / мл), что необходимо для получения 5,6 литров диоксида углерода из образца известняка, который содержит 5% примесей.
Напишите уравнение реакции:
( mathrm_+2 mathrm rightarrow mathrm_+mathrm_ mathrm+mathrm_ uparrow )
Во время реакции образуется углекислота ( (mathrm 2 mathrm 3) ), которая сразу же разлагается в воду ( (mathrm 2 mathrm) ) и двуокись углерода ( (mathrm 2) ).
Рассчитайте количество вещества диоксида углерода по формуле:
где ( mathrm ) — молярный объем, т. е. объем, который занимает один моль газа в нормальных условиях. ( mathrm=22,4 л/моль )
Для расчета количества вещества соляной кислоты мы составляем пропорцию в соответствии с уравнением реакции:
2 моля ( mathrm ) приводят к образованию 1 моль ( mathrm 2 )
x моль ( mathrm )приводит к образованию 0,25 моль ( mathrm 2 )
Молярная масса соляной кислоты составляет 36,5 г / моль. Рассчитайте массу соляной кислоты:
( m(H C l)=n(H C l) cdot M(H C l)=0,5мольcdot 36,5г/моль=18,25г )
Выражение для массовой доли вещества в растворе:
Рассчитайте массу раствора соляной кислоты по формуле:
Если раствор ( mathrm ) составляет 20%, то массовая доля соляной кислоты в нем будет равна 0,20.
Рассчитайте объем раствора соляной кислоты по формуле:
Объем 20% -ного раствора соляной кислоты составляет 82,95 мл.
Применение
Пищевая добавка Е290 применяется в производстве газированных напитков, в составе разрыхлителя для теста, выпечки и кондитерских изделий, при заморозке свежих продуктов, мороженного.
В криохирургии используется как одно из основных веществ для криоабляции новообразований.
Жидкая углекислота широко применяется в системах пожаротушения и в огнетушителях. Автоматические углекислотные установки для пожаротушения различаются по системам пуска, которые бывают пневматическими, механическими или электрическими.
Устройство для подачи углекислого газа в аквариум может включать в себя резервуар с газом. Простейший и наиболее распространенный метод получения углекислого газа основан на конструкции для изготовления алкогольного напитка браги. При брожении, выделяемый углекислый газ вполне может обеспечить подкормку аквариумных растений.
Углекислый газ используется для газирования лимонада и газированной воды. Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его распад с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде.
Углекислота в баллончиках применяется в пневматическом оружии (в газобаллонной пневматике) и в качестве источника энергии для двигателей в авиамоделировании.
Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31 °С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см2). Если температура будет выше +31 °С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см2), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа, — таким образом, работа с подобными баллонами может считаться вполне безопасной.
Твёрдая углекислота — «сухой лёд» — используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки.
Польза и вред
Е290 считается нетоксичным (4 класс опасности ГОСТ 12.1.007), но при вдыхании диоксида углерода в повышенных концентраций в воздухе по воздействию на воздуходышащие живые организмы его относят к удушающим газам.
Незначительные повышения концентрации, вплоть до 2–4 %, в помещениях приводят к развитию у людей сонливости и слабости. Опасными для здоровья концентрациями считаются концентрации около 7–10 %, при которых развиваются симптомы удушья, проявляющиеся в виде головной боли, головокружения, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), эти симптомы развиваются, в зависимости от концентрации, в течение времени от нескольких минут до одного часа.
При вдыхании воздуха с очень высокими концентрациями газа смерть наступает очень быстро от удушья, вызванного гипоксией.
Несмотря на то, что даже концентрация 5–7 % CO₂ в воздухе несмертельна, но при концентрации 0,1 % (такое содержание углекислого газа иногда наблюдается в воздухе мегаполисов), люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоком уровне кислорода, большая концентрация CO2 существенно влияет на самочувствие человека.
Получение и применение
Источники природного нахождения двуокиси углерода — разнообразные окислительные процессы. Например, дыхание людей, животных. Другие варианты:
- Вулканическая активность — при извержениях CO2 выбрасывается из глубинных слоев мантии Земли вместе с другими газообразными веществами. Известны случаи, когда люди, проживающие вблизи «дышащих» вулканов (особенно если их жилища располагались в низинах), массово страдали от удушья.
- Процессы горения или гниения органических веществ — по сути, эти реакции идентичны, отличаются только скоростью протекания.
- Воды мирового океана — самый крупный «поставщик» природного углекислого газа.
https://youtube.com/watch?v=7fb5V0z52uM
Производственное и лабораторное извлечение вещества
В лабораторных условиях диоксид углерода получают при взаимодействии карбоната кальция и соляной кислоты (серная кислота в этом случае не годится):
CaCO3 + 2HCl → CaCl2 + CO2 + H2O.
Реакцию проводят в аппарате Киппа (специальный прибор для получения газов).
В промышленности для получения CO2 используют реакцию термического разложения:
CaCO3 → CaO + CO2.
В качестве исходного материала применяют известняк, мел, реже — доломит, магнезит. Кроме того, газ получают и при сжигании угля, торфа, нефтепродуктов и древесины. Еще один вариант — извлечение из отходов, образующихся на химических производствах. Именно такой метод является наиболее рентабельным с экономической точки зрения.
Примечание: «сухой лед» — побочный продукт пищевой отрасли (пивоварение, ликероводочная промышленность).
Использование двуокиси углерода
Углекислый газ широко применяется в различных отраслях промышленности. Например, он незаменим в содовом производстве, синтезе органических кислот, изготовлении безалкогольных «шипучих» напитков (ситро, лимонада и прочих). Сухой лед используется в качестве охлаждающего компонента — холодная среда препятствует гниению пищевых продуктов. Другие варианты:
- В металлургической промышленности — для регулировки процесса отвода стоков, осаждения газов, использование лазерного луча, сварка.
- Химическая промышленность — регулирование скорости проведения химических реакций, в качестве нейтрализатора щелочи, очистки тканей.
- Легкая промышленность — целлюлозно-бумажное производство.
- Медицина и фармацевтическая промышленность — углекислота незаменима при проведении некоторых хирургических вмешательств, реанимировании пациентов.
А еще углекислый газ используют в сельском хозяйстве при выращивании различных культур: в качестве «подкормки» его запускают в зимние теплицы для улучшения «дыхания» растений. Кроме того, двуокись углерода используется и при тушении пожаров, особенно тех, что невозможно ликвидировать порошковыми или пенными средствами.
Причины образования инея на баллоне
Постараемся разобраться, почему происходит так, что замерзает газ в баллоне, находящемся на улице, при понижении температуры воздуха. Так, для начала нужно понять, что охлаждение частиц происходит при интенсивном высвобождении газа из баллона. Поскольку газ внутри емкости закачивается под давлением, он сконцентрирован в жидком состоянии. Вследствие этого происходит частичное замерзание жидкого газа во время его высвобождения.
Причина первая — низкая температура воздуха
Исходя из практики использования баллонов, оптимальная температура при которой оборудование будет нормально работать составляет примерно 10 градусов, а при снижении этой отметки, начинаются проблемы с подачей газа в систему.
Если ваше оборудование находится в помещении с отоплением, тогда не стоит обращать внимание на эти показатели. Также не стоит беспокоиться о том, что ваш газовый баллон замерзнет и выйдет из строя, если оставить его в помещении без отопления в зимнюю пору года
Зимняя температура слишком маленькая, чтобы полностью заморозить топливо.
Причина вторая — высокое содержание бутана
А сейчас разберемся, может ли замерзнуть газ, который находится внутри баллона, и как это предотвратить. Так, чтобы обеспечить правильную работу газовых приборов, необходимо соблюдать правильное соотношение пропана и бутана. Правильные пропорции помогут достичь максимального потребления топлива и корректной работы приборов при отрицательной температуре окружающей среды.
Пропорции топлива летом
Как уже было сказано раньше, температура замерзания бутана, отличается от граничной температуры замерзания пропана. Путём практических исследований были выведены оптимальные пропорции для работы оборудования зимой и летом.
Для теплого времени года, топливо смешивается в таких пропорциях:
- Пропан – 40 %;
- Бутан 60 %.
Такое соотношение считается наиболее эффективным для потребления. Стоит отметить, что этот вариант имеет более низкую стоимость, чем топливо с «зимней» пропорцией.
Зимние пропорции топлива
Для использования газовых баллонов зимой пропорции будут другими, а именно:
- Пропан – 60 %;
- Бутан – 40 %.
В некоторых случаях количество пропана может достигать 80 процентов. Но, исходя из того, что пропан стоит дороже, чем бутан, итоговая цена на топливо также будет выше.
Причина третья — повышенное потребление газа
Но всё же, почему емкость покрывается инеем только в том месте, где газ находится в жидком состоянии? Низкая температура окружающей среды – не единственная причина обмерзания. Как известно, газовая плита, камин или другое оборудование, которое работает от газового баллона, функционирует при преобразовании газа из жидкого состояния в парообразный вид.
Есть два варианта преобразования газа, а именно:
- нагревание топлива;
- естественное испарение.
В этом случае все частицы с мощной кинетической энергией стремительно направляются в верхнюю часть емкости и отделяются от частиц в жидком состоянии с меньшим кинетическим потенциалом.
Газ, который пребывает в жидком состоянии внутри баллона, всегда находится внизу, а паровая часть стремится вверх. Таким образом и осуществляется высвобождение топлива и подача его в газовую плиту или другое оборудование
В связи с такими условиями жидкое топливо начинает терять температуру. Из этого следует, что при повышении потребления газа понижается температура его жидкого состояния. Проще говоря, чем больше топлива потребляет оборудование, тем быстрее будет замерзать газовый баллон.
По мере охлаждения частиц понижается способность самостоятельного испарения сжиженного газа. Отсюда следует, чем холоднее будут частицы, тем медленнее будет испаряться газ. При этом оборудование начинает работать с перебоями или вовсе перестаёт функционировать.
Воздействие на человека
Углекислый газ нетоксичен, но при вдыхании его повышенных концентраций в воздухе по воздействию на воздуходышащие живые организмы его относят к удушающим газам. По ГОСТу (ГОСТ 8050-85) углекислота относится к IV классу опасности.
Незначительные повышения концентрации, вплоть до 0,2−0,4 % (2000−4000 ppm), в помещениях приводят к развитию у людей сонливости и слабости.
Влияние на взрослых здоровых людей | Концентрация углекислого газа, ppm |
---|---|
Нормальный уровень на открытом воздухе | 350—450 |
Приемлемые уровни | <600 |
Жалобы на несвежий воздух | 600—1000 |
Максимальный уровень стандартов ASHRAE и OSHA | 1000 |
Общая вялость | 1000—2500 |
Возможны нежелательные эффекты на здоровье | 1000—2500 |
Максимально допустимая концентрация в течение 8 часового рабочего дня | 5000 |
Опасными для здоровья концентрациями считаются концентрации около 7−10%, при которых развиваются симптомы удушья, проявляющиеся в виде головной боли, головокружения, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), эти симптомы развиваются, в зависимости от концентрации, в течение времени от нескольких минут до одного часа.
Для помещений нормальным является уровень CO₂ около 600 ppm (частей на миллион). Повышенные концентрации углекислого газа снижают когнитивные способности людей. Уже при 1200 ppm расширяются кровеносные сосуды в мозге, снижается активность нейронов и уменьшается объём коммуникации между регионами мозга. В школьных классах типичной является концентрация 2000−2500, а общий разброс значений — от 1000 до 6000, это вызывает обеспокоенность у исследователей, поскольку выявлено снижение результатов учеников, выполняющих тестовые задания в душных помещениях.
При вдыхании воздуха с очень высокими концентрациями газа смерть наступает очень быстро от удушья, вызванного гипоксией.
Несмотря на то, что даже концентрация 5—7% CO₂ в воздухе несмертельна, но при концентрации 0,1 % (такое содержание углекислого газа иногда наблюдается в воздухе мегаполисов), люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоком уровне кислорода, большая концентрация CO₂ существенно влияет на самочувствие человека.
Симптомы у взрослых здоровых людей | Концентрация углекислого газа, ppm |
---|---|
Легкое отравление, учащается пульс и частота дыхания, тошнота и рвота | 30 000 |
Добавляется головная боль и легкое нарушение сознания | 50 000 |
Потеря сознания, в дальнейшем — смерть | 100 000 |
Вдыхание воздуха с повышенной концентрацией этого газа не приводит к долговременным расстройствам здоровья. После удаления пострадавшего из атмосферы с высокой концентрацией углекислого газа быстро наступает полное восстановление здоровья и самочувствия.
Как влияет диоксид углерода на организм человека
Как пищевая добавка углекислый газ признан «условно безопасным» и разрешен к использованию практически во всех странах мира, в том числе и в России. Тем не менее, по утверждению специалистов, чрезмерное употребление, например в составе газированных напитков, диоксида углерода, вред которого заключается в способности увеличивать всасываемость кишечника, может привести к следующим неприятным последствиям:
- быстрое опьянение в результате употребления газированных алкогольных напитков;
- вздутие живота и отрыжка;
- существуют данные, что сильногазированные напитки способны вымывать кальций из костей.
Что за соединения: CO, CO2, NOx?
Я даже почти разобралась с двумя первыми, вроде как окись углерода и двуокись углерода — но точное ли это название? В третьем скорее всего вместо х могут стоять разные циферки, но название будет общее?
Помогите, надо очень-очень срочно.
СО — оксид углерода(II), окись углерода (устаревшее название), угарный газ (бытовое название).
СО2 — оксид углерода(IV), диоксид углерода, двуокись углерода, угольный ангидрид, ангидрид угольной кислоты, углекислый газ.
NOx — общее название оксидов азота в химии атмосферы, включая выбросы двигателей внутреннего сгорания, разных топок — везде, где при высокой температуре реагируют кислород и азот воздуха. Это только два газа NO и NO2 (остальные оксиды азота не образуются). NO на воздухе окисляется до NO2. Оксиды азота и сами вредны, и способствуют образованию смога, и в атмосфере могут давать пероксиацетилнитрат (ПАН), вызывающий паралич сердца. К счастью, высокие его концентрации исключительно редки.
Если элемент имеет несколько валентностей, или он может иметь различную степень окисления, то возможно образование нескольких соединений с кислородом.
1.Углерод может иметь степень окисления в соединениях с кислородом (2+, 4+) или валентность II и IV, поэтому существует
- окись углерода СО, или оксид углерода (II);
- двуокись углерода СО2, или оксид углерода (IV).
2.Азот может иметь валентность или степень окисления в соединениях с кислородом: 1+, 2+, 3+, 4+, 5+ всегда с плюсом ( отдает электроны), поэтому он может иметь несколько оксидов:
- N20 — закись азота, или оксид азота (I);
- NO — окись азота, или оксид азота (II),
- N2O3 — окись азота, или оксид азота (III),
- NO2 — двуокись азота, или оксид азота (IV),
- N2O5 — пятиокись азота, или оксид азота (V).
Порой в химии некоторые соединения вызывают серьёзные затруднения, поскольку одна и та же химическая формула может иметь несколько названий.
Ниже предлагаю ознакомиться с тремя формулами CO, CO2, NOx, а также с их кратким описанием.
СО — окись или оксид углерода, соединение СО2 — углекислый газ, NO — нитрат, NO2 — нитрит, а вот у нитридов не помну сколько молекул кислорода.
Окись углерода, химическая формула — СО, это бесцветный газ без запаха и вкуса, но очень токсичный. Он является продуктом неполного сгорания углеродсодержащих соединений.
Диоксиид углероода или двуоокись углерода СО2 — присутствует в атмосфере в количестве примерно 385 частей на миллион (по объему) или 0,039%. 50 лет назад эта пропорция была гораздо меньше и составляла 280 частей на миллион.
NOx — оксиды азота, это семейство ядовитых, химически активных газов, которые образуются при сгорании топлива. NOx — побочный продукт работы почти всех транспортных средств (автомобили, строительная техника, лодки), а также промышленных предприятий: электростанций, различных печей, турбин и т.п. NOx является сильным окислителем, вступает в контакт с летучими органическими соединениями.
Физические свойства
При нормальных условиях диоксид углерода представляет собой бесцветный газ, не обладающий запахом. Он тяжелее воздуха, поэтому углекислый газ и может вести себя, как жидкость. Например, его можно переливать из одной емкости в другую. Это вещество немного растворяется в воде – в одном литре воды при 20 ⁰С растворяется около 0,88 л CO2. Небольшое понижение температуры кардинально меняет ситуацию – в том же литре воды при 17⁰С может раствориться 1,7 л CO2. При сильном охлаждении это вещество осаждается в виде снежных хлопьев – образуется так называемый «сухой лед». Такое название произошло от того, что при нормальном давлении вещество, минуя жидкую фазу, сразу превращается в газ. Жидкий диоксид углерода образуется при давлении чуть выше 0,6 МПа и при комнатной температуре.
Углекислый газ и мы: чем опасен CO2
Углекислый газ — один из продуктов обмена веществ в организме человека. Он играет большую роль в управлении дыханием и снабжением кровью органов. Рост содержания CO2 в крови вызывает расширение сосудов, способных таким образом транспортировать больше кислорода к тканям и органам. Аналогично и система дыхания понуждается к большей активности, если концентрация углекислоты в организме растет. Это свойство используют в аппаратах искусственной вентиляции легких, чтобы подстегнуть собственные органы дыхания пациента к большей активности.
https://youtube.com/watch?v=DqbvEhn5uJc
Кроме упомянутой пользы, превышение концентрации СO2 может принести организму и вред. Повышенное содержание во вдыхаемом воздухе приводит к тошноте, головной боли, удушью и даже к потере сознания. Организм протестует против углекислого газа и подает человеку сигналы. При дальнейшем увеличении концентрации развивается кислородное голодание, или гипоксия. Co2 мешает кислороду присоединяться к молекулам гемоглобина, которые и осуществляют перемещение связанных газов по кровеносной системе. Кислородное голодание ведет к снижению работоспособности, ослаблению реакции и способностей к анализу ситуации и принятию решений, апатии и может привести к смерти.
Общие симптомы отравления углекислым газом
Такие концентрации углекислого газа, к сожалению, достижимы не только в тесных шахтах, но и в плохо проветриваемых школьных классах, концертных залах, офисных помещениях и транспортных средствах — везде, где в замкнутом пространстве без достаточного воздухообмена с окружающей средой скапливается большое количество людей.
Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа:
Диоксид углерода относится к кислотным оксидам, поэтому для него характерны следующие химические реакции:
1. реакция взаимодействия оксида углерода (IV) и водорода:
CO2 + 4H2 → CH4 + 2H2O (t ~ 200 °C, kat = Cu2O).
В результате реакции образуются метан и вода.
2. реакция взаимодействия оксида углерода (IV) и углерода:
CO2 + C ⇄ 2CO (t = 700-1000 °C).
В результате реакции образуется оксид углерода (II). Реакция протекает при взаимодействии углекислого газа с раскаленными углями.
3. реакция взаимодействия оксида углерода (IV) и магния:
CO2 + 2Mg → 2MgO + C (t ~ 500 °C).
В результате реакции образуются оксид магния и углерод.
4. реакция взаимодействия оксида углерода (IV) и гафния:
Hf + CO2 → HfC + HfO2 (t = 800-1000 °C).
В результате реакции образуются карбид гафния и оксид гафния.
5. реакция взаимодействия оксида углерода (IV) и германия:
Ge + CO2 → GeO + CO (t = 700-900 °C).
В результате реакции образуются оксид германия и оксид углерода (II).
6. реакция взаимодействия оксида углерода (IV) и цинка:
Zn + CO2 → ZnO + CO (t = 800-950 °C).
В результате реакции образуются оксид цинка и оксид углерода (II).
7. реакция взаимодействия оксида углерода (IV) и индия:
2In + CO2 → In2O + CO (t ~ 850 °C).
В результате реакции образуются оксид индия и оксид углерода (II).
8. реакция взаимодействия оксида углерода (IV) и циркония:
2Zr + CO2 → ZrC + ZrO2 (t = 800-100 °C).
В результате реакции образуются карбид циркония и оксид циркония.
9. реакция взаимодействия оксида углерода (IV) и вольфрама:
W + 2CO2 → WO2 + 2CO (t ~ 1200 °C).
В результате реакции образуются оксид вольфрама и оксид углерода (II).
10. реакция взаимодействия оксида углерода (IV) и оксида лития:
Li2O + CO2 → Li2CO3.
В результате реакции образуется карбонат лития.
11. реакция взаимодействия оксида углерода (IV) и оксида натрия:
Na2O + CO2 → Na2CO3 (t = 450-550 °C).
В результате реакции образуется карбонат натрия.
12. реакция взаимодействия оксида углерода (IV) и оксида калия:
K2O + CO2 → K2CO3 (t ~ 400 °C).
В результате реакции образуется карбонат калия.
13. реакция взаимодействия оксида углерода (IV) и оксида бария:
BaO + CO2 → BaCO3.
В результате реакции образуется карбонат бария.
14. реакция взаимодействия оксида углерода (IV) и оксида кальция:
CaO + CO2 → CaCO3.
В результате реакции образуется карбонат кальция.
15. реакция взаимодействия карбоната кальция, оксида углерода (IV) и воды:
CaCO3 + CO2 + H2O → Ca(HCO3)2.
В результате реакции образуется гидрокарбонат кальция.
16. реакция взаимодействия оксида углерода (IV) и оксида магния:
MgO + CO2 → MgCO3.
В результате реакции образуется карбонат магния.
17. реакция взаимодействия оксида углерода (IV) и оксида кремния (II):
SiO + CO2 → SiO2 + CO (t ~ 500 °C).
В результате реакции образуются оксид кремния (IV) и оксид углерода (II).
18. реакция взаимодействия оксида углерода (IV) и воды:
CO2 + H2O ⇄ H2CO3.
В результате реакции образуется угольная кислота.
19. реакция взаимодействия оксида углерода (IV) и гидроксида лития:
2LiOH + CO2 → Li2CO3 + H2O.
В результате реакции образуются карбонат лития и вода. В ходе реакции используется концентрированный раствор гидроксида лития.
20. реакция взаимодействия оксида углерода (IV) и гидроксида калия:
KOH + CO2 → KHCO3,
2KOH + CO2 → K2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат калия, во втором случае – карбонат калия и вода. Реакция протекает в первом случае в этаноле и используется разбавленный раствор гидроксида калия, во втором используется концентрированный раствор гидроксида калия.
21. реакция взаимодействия оксида углерода (IV) и гидроксида натрия:
NaOH + CO2 → NaHCO3,
2NaOH + CO2 → Na2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат натрия, во втором – карбонат натрия и вода. В ходе первой реакции используется разбавленный раствор гидроксида натрия, в ходе второй – концентрированный раствор гидроксида натрия.
22. реакция взаимодействия оксида углерода (IV) и гидроксида кальция:
Ca(OH)2 + CO2 → CaCO3 + H2O.
В результате реакции образуются карбонат кальция и вода.
23. реакция взаимодействия оксида углерода (IV) и гидроксида бария:
Ba(OH)2 + CO2 → BaCO3 + H2O.
В результате реакции образуются карбонат бария и вода.
24. реакция взаимодействия оксида углерода (IV) и метана:
CH4 + CO2 → 2CO + 2H2 (t = 800-900 °C, kat = NiO, нанесенный на Al2O3).
В результате реакции образуются оксид углерода (II) и вода.
25. реакция термического разложения оксида углерода (IV):
2CO2 → 2CO + O2 (t > 2000 °C).
В результате реакции образуются оксид углерода (II) и кислород.
26. реакция фотосинтеза:
6CO2 + 6H2O → C6H12O6 + 6O2 (hv, kat = хлорофилл).
В результате реакции образуются глюкоза и кислород.